淘客熙熙

主题:【原创】乱弹TG第一回:话说TG这次实验的心路历程 -- face888

共:💬300 🌺1199 🌵7 新:
全看分页树展 · 主题 跟帖
家园 我国在物理学研究上的状况

外链出处

2008物理学:中国科学家光芒闪现

上世纪90年代初在美国从事研究工作时,中科院理论物理所所长吴岳良院士发现身边有这么一股潮流:很多理论物理学家转行去了华尔街工作。如今,在全球金融危机的影响下,吴岳良提出:“现在的形势下,是不是又会有一批物理学家和数学家抱着另外一种责任去金融界发挥作用?”

实际上,利用统计物理的原理和方法对金融体系的运行规律和潜在风险作出预测,已经发展成一门经济物理学(econophysics)。我国物理学家也已投入该领域的研究。

2008年,金融危机成为最大的话题。如何依靠科技力量促进社会经济的发展成为2009年科学界面临的最大课题。近日,记者在对多位专家的采访中发现,虽然笼罩在金融危机阴影之下,2008年的国际物理学界仍取得多项进展,而中国科学家的光芒也闪现在物理学的多个领域之中。

ET:基础研究亟须加强

2007年年末,多位科学家提出物理学应向ET(环境和能源科技)方向发展。2008年年末,在全球面临金融危机的威胁下,新能源、新材料被认为有可能取代IT成为继续推动经济及生产力发展的重要方向。

2008年8月,美国MIT的科学家宣布将一种磷酸钴盐作为催化剂溶解在电解水中,能使得水电解为氢气和氧气的效率达到几乎100%,这样就可以将电能以氢能的方式储存起来,甚至实现24小时不间断发电。这项研究成果可能会对太阳能、风能等大规模应用起重要推动作用。

在国内,中国科学院、科技部、国家自然科学基金委等都组织了太阳能材料、洁净能源材料、新型能源材料、储能材料、能源转换材料等方面的研究项目。

不过,在最近举行的中国科学院院工作会议上,来自中国科学院的专家们表示,虽然对ET重要性已有广泛认识,但在2008年,我国对IT的投资仍远远高于ET。这其中有很多原因,如ET项目往往规模较大,须由国家投资。但一个不可回避的问题就是:ET中的很多核心问题尚未解决。专家们呼吁,从根本上解决能源和环境问题,应首先加强相关领域的基础研究。

吴岳良强调,基础理论的突破需要长期积累才能实现。2008年不管是“神七”上天还是抗震救灾中所运用到的科学技术都是基于过去长期积累的基础,2008年的诺贝尔物理学奖也是由3位理论物理学家分别于40年前和30年前作出的理论预言,经过长期实验的检验而得到同行专家的公认。这些例子都说明,要取得重大原创性的研究成果,对基础研究的长期稳定支持是十分必要的。

高能物理:期待2009年

2008年最引人瞩目的事件是欧洲核子中心的大型强子对撞机(LHC)于9月正式启动。LHC的主要科学目标是希望证实是否存在Higgs粒子,以揭示物质质量的起源。

它是目前人类历史上建造的最大、最复杂的科学研究装置,总造价约40亿欧元,周长为27公里,质心能量为14TeV,来自世界各国的5000名科学家和工程技术人员参与建造,我国近10所科研院所和高校的科研人员参加了所有4个大实验的大型探测器的建造。

吴岳良在接受《科学时报》记者采访时特别指出,LHC加速器的精确性以及前所未有的高要求推动了许多尖端高技术的发展,而对其大量实验数据的分析将占全世界信息产出量的1%。据悉,LHC的网格工程已经开发出一个新的保存、管理、共享和分析数据的方法。

启动后,LHC成功实现了质子束流贯穿整个对撞机,但还未实现碰撞。不幸的是,LHC在试运行9天后出现故障,预期2009年6月重新开始运行。

不过,2008年高能物理学家还是在一些实验中观测到了奇异的强子态。如美国费米国家加速器实验室8月宣布,在对撞实验中发现一种新型粒子包含两个奇异夸克和一个底夸克,这是首次观察到夸克间有不同寻常的组合,这一发现有助于更准确地理解夸克如何形成物质。另外,美国斯坦福大学的小组看到了能量最低态的底夸克偶素,日本KEK的Belle组看到了一些四夸克态粒子。

在国内,大科学装置的建设也取得了一系列进展。北京正负电子对撞机二期(BEPCII)已按计划开始运行,北京谱仪III探测器(BESIII)已开始取数。中科院理论物理所研究员陈裕启向《科学时报》记者介绍,随着BES III在2009年的正式运行,将使我国成为国际上粲夸克能区物理研究的前沿阵地,同时也将提供高强度的硬X光。

上海光源已于2007年底成功实现了3GeV电子束储存,并观测到了同步辐射光,计划于2009年4月开始试运行。届时将推动我国在生命科学和医药学、材料科学、微电子机械系统、石化等领域的研究。

2008年10月16日,大天区面积光纤光谱天文望远镜(LAMOST)在国家天文台兴隆观测基地落成。LAMOST已成为世界上最大口径的大视场望远镜,具有单次观测可同时获得3000多条天体光谱的能力,也是世界上迄今光谱获取率最高的望远镜。

核物理:竞争进一步加剧

“从2008年的形势看来,可以预见,未来10到15年,世界范围内围绕核科学研究、人才争夺等方面的竞争将进一步加剧。”北京大学教授孟杰在接受《科学时报》记者采访时这样表示。

继日本放射性束工厂建成、德国重离子研究所耗资约12亿欧元的反质子与离子研究装置(FAIR)开始建造、法国启动放射性束装置升级工程之后,美国终于不再容忍核物理研究中心移到欧洲或者日本。美国能源部于2008年12月11日宣布启动建设新一代放射性同位素束流装置(FRIB),用于推进对放射性同位素和宇宙演变的研究工作。据悉,该装置初步预算约5.5亿美元,并需要约10年时间来完成设计和建造。

在国内,兰州中国科学院近代物理研究所的大科学装置重离子加速器冷却储存环于2008年7月已经正式通过国家验收,开展物理实验的条件也逐步完善,基本具备合成Z≥110超重核区的条件。

中国原子能科学研究院放射性束装置升级工程BRIF正在建设,同时积累了一批重要的实验数据

孟杰表示,中国在核科学研究的理论方面也已具备了很强的国际竞争力,2008年持续在国际最高水平杂志上发表有影响力的文章,正在逐步形成群体效应和推出持久、系统的工作。“特别应该指出的是,理论和实验相互结合,催生了许多原创性的研究成果,例如清华大学与美国同行合作的关于108Tc谱学实验结果,经过与北京大学同行的深入讨论,发现了重要的赝自旋伙伴带。”

2009年新年伊始,中国科学技术大学成立核科学技术学院。该学院由中科大与中国科学院合肥物质科学研究院联合建设。至此,我国高校已成立了一批核相关学院,我国核科学人才队伍建设的步伐不断加快。

不过,作为中日核物理合作委员会委员,孟杰对中日之间核物理研究的差距一直有着清醒的认识。他指出,早日赶上甚至超过发达国家的核物理水准,不仅需要国家的大力支持,更需要核科学工作者思考新的人才培养模式和具有创新性思维。

他说:“过去我国核研究方面的人才有限,所以现在往往首先想到引进人才。但实际上,核科学方面的人才在全世界都存在缺口,世界各国都在进行人才争夺,尤其是高端人才。因此,我们必须进行从本科生到青年教师的全方位人才培养,在引进人才时瞄准那些崭露头角的年轻科学家,在国内营造适宜年轻教师成长的学术氛围。”

凝聚态物理:铁基高温超导体研究独领风骚

2008年度凝聚态物理方面的最大亮点是铁基和镍基高温超导体的发现。而中国科学家的工作更是掀起了研究铁基超导体的新高潮,受到国际同行的肯定。

日本东京工业大学Hosono研究组2006年首次报道在铁基材料中发现超导现象,但其临界温度很低,并没有引起太多关注。2008年2月,该小组在美国化学杂志JACS发表论文称,在镧氧铁砷材料中通过掺氟可以出现超导,转变温度可上升至26K。

这个结果迅速引起了中国科学家的关注,很快被来自中国科学院物理所、中国科学技术大学、浙江大学的4个实验小组重复,并通过不同掺杂和制备方法,将铁基超导材料的临界温度不断提高。

5月25日,《自然》报道了中国科学技术大学陈仙辉研究小组在国际上首次获得临界温度超过40K的铁基超导体。这一研究成果正式宣布铁基超导体是除了铜基氧化物超导体以外,第二个非传统的高温超导体。

之后,中科院物理研究所赵忠贤领导的小组将超导临界温度进一步提升至55K,这也是目前为止的最高纪录

“这次国际上铁基超导体的研究热潮完全是由中国科学家推动的。”中科院研究生院教授苏刚对《科学时报》记者说:“从1986年铜氧化物高温超导体发现以来的20多年里,国家一直在稳定投入支持对高温超导材料及其物理机理的研究,因而保留和锻炼了一支水平较高的研究队伍。这次中国科学家能够在极短的时间内取得快速突破,显然是国家长期对这类基础研究稳定投入而产生的结果。”

在高温超导的应用方面,最近,中科院合肥物质科学研究院等离子体所的科研人员在高温超导大电流引线试验中获得了通过90千安电流的成果,这是目前世界各国获得的最高纪录。该结果对于人类首座热核聚变试验堆ITER需要的大电流引线的研制方面迈出了关键一步。

铁基超导体的发现为研究高温超导配对的物理机制提供了新的途径。中科院副院长詹文龙日前在谈到铁基超导体的发现时表示:“对于临界温度来说,55K并不算高。但铁基材料还是引起了轰动,原因是其或许有助于解决长期以来的奥秘:铜氧化物是如何超导的?关键问题是这两类超导体的工作原理是否相同。”目前,经过中外科学家的共同努力,已经制备出了不含砷的铁基超导材料。不过,中科院理论物理所副研究员罗洪刚向《科学时报》记者指出:“铁基超导体看起来似乎比铜氧化物高温超导体复杂,具体的结论还有待进一步深化。”

石墨烯具有许多新奇的性质及潜在的应用价值。2008年4月,《科学》杂志报道,欧洲物理学家小组用石墨烯制造出史上最小的晶体管,仅有10原子长,1原子宽。

2008年7月,美国哥伦比亚大学J.Hone和J.Kysar研究小组在实验中首次证实了石墨烯是目前世界上强度最强的材料。另外,科学家也证实了石墨烯是非常良好的热传导体和导电体,并发现其具有高透明性。这些发现表明石墨烯将是未来微型电子线路的理想材料,也将在液晶显示领域具有广泛用途。

据罗洪刚介绍,中国科学院数学与系统科学研究院的科学家在理论计算方面也做出了很好的工作。

在量子计算方面,中科大潘建伟领导的国际团队实现了原理型量子中继器,首次实现了具有存储和读出功能的纠缠交换,该装置可实现量子信息传递。《自然》称其“扫除了量子通信中的一大绊脚石”。另一个团队首次实现了固体中的多粒子纠缠,该技术对于制造量子计算机具有很大的帮助。另外,2008年在一片硅芯片上首次实现了小型化的量子逻辑门。不过,量子物理的基本理论还有待进一步探明,真正的量子计算机离我们仍很遥远。

另外,由于获得2007年诺贝尔物理学奖而被大家熟知的自旋电子学2008年又获进展——科学家实现了对金刚石中电子自旋的操控。来自荷兰和美国的一组科学家在一个金刚石样品的空位中俘获了一个电子,并探测到了单个电子的自旋;而来自哈佛大学的研究组将单个碳11杂质原子在金刚石中的位置通过与碳原子的核自旋作用成功地限制在了1纳米的范围内。苏刚表示,这项研究成果将会导致产生新型的电子线路。

苏刚同时认为,高温超导体、石墨烯及其电子学器件研究、纳米自旋电子学方面的突破以及新兴纳米材料及其器件的研究等在2009年仍将是研究热点。

天文和天体物理:暗物质研究逐渐升温

宇宙学和天文发现是2008年的一大热点,如实现对太阳系外的行星直接成像。

在欧洲,意大利帕尔多瓦AURIGA实验室的科学家将1根铝棒的温度通过加载特殊的电流冷却到1毫开以下,实现了突破。这些铝棒将被用来制造探测来自太空引力波的探测器。

另外,人们通过一个专门设计用于探测伽马射线的Swift卫星和其他一些望远镜观察到了迄今为止最亮的伽马射线。据推测,这次伽马射线爆发来自于70亿光年外的太空,明亮的程度甚至可以用裸眼观察到。

在探索暗物质方面,2008年,科学家发现了多余的宇宙线电子的证据,这可用来解释重的暗物质粒子的湮灭现象。

2008年11月,欧洲与俄罗斯耗费数亿美元联合研制的磁谱仪探测器PAMELA发布了数据,表明地球大气之上的宇宙射线中含有超量的高能正电子。

几周之后,另一组美国南极长周期气球项目(ATIC)科学家报告了超量高能宇宙射线电子流现象,并且数据与PAMELA数据恰好吻合,研究结果发表于2008年11月20日的《自然》上,中科院紫金山天文台研究员常进为论文第一作者,紫金山天文台为第一单位。该观测如果被证实,将是人类第一次发现暗物质粒子湮灭的证据。

目前,美国、日本、意大利等国的研究组都在计划研制新探测器,增强探测能力。而我国成果的取得主要借助国外探测器平台,探测器研制能力与国际最高水平相比还有很大差距。今后,随着国外独立开展相关工作,我国的研究和观测工作将受到一定影响。

吴岳良指出,虽然暗物质的存在已经有很强的证据,但关于暗物质和暗能量的本质以及它们的理论解释还有待进一步探明。今后几年,暗物质和暗能量的研究以及超越粒子物理和宇宙学标准模型的新物理将是热点。

《科学时报》 (2009-1-21 A1 要闻)

全看分页树展 · 主题 跟帖


有趣有益,互惠互利;开阔视野,博采众长。
虚拟的网络,真实的人。天南地北客,相逢皆朋友

Copyright © cchere 西西河